T — A quick look at road safety and risk assessment
for autonomous vehicles:
e L The importance or virtualization.
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CAUSES OF ACCIDENTS SHIFTING

Failures today Future failures

Other | ' 1.2 %\ Technical
causes failures?
Environment/ 4.6%
weather
Technical 0.7%
failures ok
-
failures Other  Environment/
causes weather

Source: T Winkle, GIDAS

Human errors
are much
more easily
socially
accepted
than
technological
failures!
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VEHICULAR ASSESSMENT ISSUES

[ Vehicles are no longer self-contained; they observe and interact with their
surroundings.

[ The control of the vehicle is no longer fully assumed by the driver, if at all.

1 On-board decision-making processes are complex and based on multiple

heterogeneous non-ergodic sources of information to highly dimensional
data spaces.

1 Open ODD.

[ Vehicles are heterogeneous and evolving with time (learning, updates).




CURRENT TYPES OF SAFETY METRICS

‘Based on leading measures (pre-collision):
- Computed on-board, integrated dynamic measure of driving abilities

- Safety zone determination and detection of violations (ego vehicle and
surrounding objects dynamics)

- Stopping distance predictions
- Safety related infractions
Based on lagging measures (post-collision):
- Outcome measures, including crashes, injuries, etc. Data collected by Transportation agencies.
- Statistics based on VMTs (vehicle miles traveled)
- Statistics based on Hours Driven
- Statistics based on Disengagement Frequency
Turing tests approaches
- Measuring similarity/difference between human versus artificial driving

“Best practice” design approaches: lead to “over” complexity with excess of redundant sensors,
software code etc. Expensive. Not transparent (Likely, society will not be satisfied just with the “best in
class” argument when dealing with driving automation. W OPAL-RT
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100% SAFE: REALLY 7

d Defining a safe action-taking by a car, it is
impossible to achieve absolute safety, in all
circumstances.

[ A simple example: From the central yellow car’s
perspective, no action can ensure that none of
the surrounding cars will crash into it, and no

[ action can help it escape this potentially
dangerous situation.

Source:Shai Shalev-Shwartz, Shaked Shammah, Amnon Shashua, Mobile Eye, 2017
OPAL-RT
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ROAD SAFETY DEPENDENCY ON SYSTEM
PERFORMANCE
Demand for safety naturally increases with increasing automated driving

tasks, since passengers must fully rely on flawless systems operation.

JSafety of passengers is directly dependent on the performance of
vehicular embedded systems and sensors. “Safety” is a quality with a
sense of duration in time and is based on two systems properties:

JReliability: statistically guarantee minimum period of correct (safe)
operation with a given level of confidence (time to failure). Affected by
system complexity.

JRobustness: able to operate correctly under a wide range of conditions
and able to sustain (insensitive) unexpected perturbations. Affected by
ODD dimensions.




SAFETY AND VEHICLE COMPLEXITY

JRobustness means
generalization.

BUT [ SAID, “BUY
BIRTHDAY GIFT”. NOT

JGeneralization brings
complexity.

ISystem complexity means lack
of control.

JLack of control brings
unpredictability.

JUnpredictability means
increased risk. Driverless Car Mishap #(3

M OPAL-RT
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SAFETY AND VEHICLE COMPLEXITY

 System complexity dramatically increases the number system behavioral

responses (combinatorial NP hard problems) with
d The number of embedded interconnected sensors, processors and controllers
] Exploding software functionalities

] Outsourcing and sharing information
 Safety and reliability margin will decrease
 The total cost of failure will increase dramatically
[ User tolerance to failure will decrease

J Systems will need to be designed with increased modularity and testability.
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RELIABILITY

O For life-critical applications such as with driving, the validation
process must establish that system reliablility is extremely high.

U Historically, this very high reliability requirement has been
translated into a probability of failure on the order of 10-7 to 10-°
for a 1- to 10-hour ride.

Level of reliability

High <107
Moderate 103to 107/
Low > 103
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TESTING FOR SAFETY WITH COMPLEX SYSTEMS

Testing and validation protocols will differ greatly from one level of complexity to l
another. Granularity must be taken into accountin the assessment process.

Micro Macro

- >

Subcomponent Component Subsystem System Ecosystem
Lidar Passengers

Chip
\ 5 - Road-based
Camera erbceptmn — HAV transportation
/ subsystem s
Lens
Sensor fusion Planning Ervironmment
algorithm subsystem
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VIRTUAL DRIVER SYSTEM INTEGRITY RISK

ALL

DCAT

U NIIRTUAL DRIVER SYSTEM

PERCEPTION
SENSORS .
- Objact o 2x10°
- RADAR »| Detection -
- LIiDAR - Object . PLANMNING
- Cameras Classification Prs. =10
- Ultrasonics - Object
Tracking LOCALIZATION
3.5x 10"
GNSS " i - Vehicle
* - Vehicle Pose Y Mission CONTROL
2x10 | - vehicle
VEHICLE Trajectory 3
5.5 x 107
DYNAMICS - Calculate
- MU Steer Wheel
- Gyre Angle
- Calculate
MAP H MAP N . Decel Profile
SERVER [ [°|-Map Tiles - 1 - Calculate
Accel Profile
VEHICLE DATA
- Long Speed J
- Leng Maotion L L
- Lat Motion

Pon=10"

P =10%

v

VEHICLE
SYSTEMS

LIGHTING

- Head Lamps
= Turn Signals
- Hazard Lamps

HMI

- Visual
- Audible

fatal crash / failure

Pe, =107

Tis=2x10"

fatal accidents [ mile

leu*r

FATAL CRASH

ACTUATION

- Braking
- Steering
- Propulsion

ACTIVE CHASSIS

- Controls roll,

pitch, yaw

TO INCIDENT
RATIO

TARGET LEVEL
OF SAFETY

Values are given as failures per mile. Failures in localization output are

assumed to lead directly to failures in planning.
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RELIABILITY GROWTH MODELS

TVDiCEI' seguence of events

U An intelligent system is
subjected to inputs until it
fails.

] The cause of failure is
determined.

U Then the system is fixed
and is subjected to new
sequences of inputs.

1010

>
‘q.‘
b

10—-10

Log(failure rate)

10~2

'l ] 1 1

0 3 10 15 20

Number of Bugs Removed
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UNCONSTRAINED ODD: CALLING FOR
ROBUSTNESS

A product is always designed
to operate correctly only
under nominal specifications.
Proper operationis not
guaranteed if the system
operates “outside” nominal
specifications.

Above: Glowing from the sun and high dynamicrange
of illumination;

Below: Typical snow storms in northern countries.



OPERATIONAL DESIGN DOMAINS (ODD)

0 ODD: conditions in which the CAV is intended to operate, “where” and l
“when.

d Important for levels 4-5 AVs without the aid of a human driver

(J ODD’s definition must be in terms that are identifiable or inferable by the CAVs.

[ But precision in ODD definition is very complicated. The definition should
involve inclusions and exclusions.

J Guaranteeing coverage in areas included or not excluded might be unachievable
because there is an infinity of possible driving scenarios.

( CAVs operate in open-world environment; The ODD is open.

J ODD’s definition requires common standard terminology: ontology

 Comparison of various CAVs safety performance should be based on
same ODD!

OPAL-RT
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OPTIMIZING THE ROC CURVE IN
DECISION MAKING PROCESSES -- Emergency Automation I

— Emergency Assist
100 % =g— 2

A big challenge to
achieve robustness and
reliability is to have an
extremely high sensitivity
(true positive) as well as
a close to 100%
specificity (true
negative).

—  E—

>
0%

True Positive rate (100-sensitivity)

False Positive rate (100-specificity)

OPAL-RT
TECHMBLOGIES



CURRENT APRROACHES FOR ASSESSING AVs

There are currently three main approaches to assess AVs technologies

‘ Testing and validation of AVs

4 < 4

Simulatiorns Test-Tracks Field tests

And VeHilL On-road (FOT)
] Fast and reproducible J Controlled environment; [ Testing in real-world
] Relatively inexpensive J Very limited sampling of conditions
1 Large sampling of ODD ODD; ] Take very long time
1 Controlled scenarios ] Very expensive; ] Lagging safety measures
1 Can generate ergodic data J Leading safety measures (d Very expensive (fleet)
1 Can focus on high-risk situations only; ] Not reproducible
 Both leading and lagging safety 1 Large infrastructure (] Not ergodic data

measures J No statistics, “snapshot” AT



THE NEED FOR RANDOMNESS

 AVs safety assessmentis a highly dimensional NP problems; Can be intractable (ex.
infinite number of trajectories on a continuous space)

O Physical testing on test-tracks generate only very sparse data in this highly
dimensional space; Sparsity lead to over approximated solution.

1 Randomized/stochasticalgorithms, such as Monte Carlo Las Vegas, Importance
Sampling, etc., as well as kernel methods and bootstrapping techniques are required to
adequately model uncertainties and behavioral scenarios of the traffic participants in
an open ODD space;

1 Worst-case analysis may be used, but leads to conservative processing and control
system design, which may limit the functional performance

[ The guaranteed quality of simulation outcomes at a certain level of confidence will
depend on sample size, i.e. the number of simulations performed.

Sample size is bounded if the desired level of accuracy and reliability is finite; These

bounds are rather conservative. BN OPAL-RT
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PROCESS OF VIRTUAL
ASS
Databases analysis Scenario space .
. . . Avs modeling
Scenarios screening :[I> generation :|I>
Simulation data <: Stochastic scenarios <: Models granularity
analysis variations (MC) adjustment

O Virtual assessment has the ability to perform controlled experiments in high-risk traffic
environments, without the “real” danger.

O Another key advantage of virtualization is the generation of adequate sample sizes:

U Stochastic model validity is a central requirement for proper use of virtualization;

U Fast and easily adaptable; virtual samples can be produced fast and with minimal cost;

O Virtual testing can capture any data desired for evaluation;

U Several safety metrics can be applied for performance comparison.

OPAL-RT
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SIMULATORS FOR SPEEDING UP ASSESSMENT

To avoid years of testdrive...

p/ Naturalistic \ { Accelerated \ ¢ . . h
driving environment | , evaluation tests . , Evaluation metrics,
Skew’ Skew back e.g. crash rate in the
. = é
Build o statistics of (2] naturalistic driving
stochastic surrounding omD Test condition
[ Real world I model s = |vehicles % ] %T resultsa ‘ Importance ] \. J
. {‘-.._,.a Jﬁ\v i\u._.-' _ﬁ ;m\- -
driving data 5 Ay Sampling o . \
- — o) _— Critical scenarios
il':—-w% oo ! and their probabilities
+ - Identlfy Of ﬂﬂcurring
v,
Source: D Zhao ] X : d‘..';
0 1,000,000 miles 0 10 miles

( Because major accidents are very rare events, their statistics (distributions) need to be skewed to

emphasize the safety-critical scenarios in daily driving.
U The “accelerated tests” with modified statistics are conducted.
1 Stochastic methods are then used to “skew back” the results, thus predicting in a much shorter

time the safety benefits of a system. OPAL-RT



SAFETY METRIC USING VMT: REDUCING

FATALITIES
Number of Number of
accidents due accidents
to human Nur_nber of due to risks
driving accidents in driving
prevented due automation
to driving
automation
Source: T Winkle, GIDAS
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SAFETY METRIC USING VMT: RISK DEFINITION

Safety is generally described as the absence of “unreasonable” risks. This risk is usually
defined as a product of the probability of an accident and the severity of that accident.

Fatality Number of accidents due to risk
in driving automation (accidents
Serious injury may be less numerous on
average, but more severe)
Light injury
Property
damages
Number of accidents due Number of accidents prevented due

to human driving to driving automation

Source: T Winkle, GIDAS

Severity
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SAFETY METRIC USING VMT: RISK DEFINITION

For acceptance purpose, we would like ideally the following ratio to be as
small as possible.

ExtraRisk, [ Z S, -P(A)

Accidents die
fo automation

Risk,all >, S,-P(4)

avoided
Accidents avoided
by automation

Ideally, Safety gain = SG [ 1 RisK e 1

1+ ExtraRisk

automation
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STATISTICS BASED ON VMT

O Number of years per person: 55 years

 Average number of km/year/car driven in the US: 21,000 km

O Total km/person in a lifetime in the US: 1.15 x 10°km

U Lifetime total number of hours driven (average speed of 50 km/hr): 23,000 hours

U VMT per severe accident: approximately 1 x 108 km

O Number of lifetimes per severe (lethal or with major injuries) accident: 34

U Probability of having a severe accident in a lifetime/person: 3%

O Although human drivers make millions of mistakes, very few lethal or severe
accidents occur as a consequence. These accidents are very rare events. Assuming
they are independent, we can use a simple Poisson model.

O What are the necessary traveled distance between severe accidents for the
approval of autonomous vehicles?

OPAL-RT
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STATISTICS BASED ON VMT

Assuming we wish the same performance for autonomous vehicles as for human l
driving:

2k
The safety gain SG = 1. The Poisson model: P(k) = Fe_ﬂ

The rate A : ratio of the total distance performed for the test (same with and without
automation), which is the average distance between fatal accident for human driving
times a distance factor, D, divided by the desired (relative) safety performance for

autonomous vehicles, that is the safety gain times the average distance between fatal
accident for human driving.

Safety gain = SG 1] ——= XK aoised a0 e 2 D D
& 1+EX‘TT€1RISkammmH dAmef SG deHan SG

OPAL-RT

TEEHHB LLLLLL



STATISTICS BASED ON VMT

ForS.=1and D=1, A = 1, the probability of having zero or An do,, D- c?Humm D
one fatal accident P(0) = P(1) =0.37. This is the probability in d - S .4 - g
human driving situations, that is every 100 million km (D = 1). Avperf G Human ¢

0.5

ForSc=2andD =2, A = 1, for CAVs, the automated driving

A
still gives P(1) = 0.37. M_/\ ;
With human driving, Sc =1and D =2,A = 2, P(1) = 0.27. 03 “

=
Here, even when automated driving is assumed twice as uz-/ 7
secure as human driving, with D = 2, its probability of having 1 8
fatal accident is higher than for human driving! 01-/ ’
If D is too small, it may also lead to false conclusions! U—/‘_’- PP S e s e s e S S s

T R R I
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STATISTICS BASED ON VMT

U To reach D = 1 at a rate of 25,000 km driven/day (Waymo CAVs fleet, 2018) it would take
almost 14 years!

1 For A much smaller than 1, (assuming SG = 1 but D very small) the probability of not

observing a fatal accident is very high (for D = 0.1, P(0) = 0.9). No conclusions, then, can be
made.

O D must be much larger than d,,,,.,,, in order to be able to draw a conclusion with a
sufficiently high significance about the performance of autonomous driving.

1 D =3 to reach a probability fewer than 5% that a worse vehicle than the comparison group
is not involved in a fatal accident. At Waymo’s rate, this would take 42 years of driving with
their actual fleet and VMT!

OPAL-RT
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STATISTICS BASED ON VMT

J But with D = 3, the confidence probability, P, to achieve SG = 1 is also 5%.

1 To determine if S¢ = 1 is really achieved, we need a much greater probability and a
greater distance factor.

Jd With P =90% and SG = 1, we need D to be about 10,7. This give us a minimum of 1.3
billion km to test drive!

Jd At Waymo’s rate, this would require 150 years to cumulate proper statistics ! Note

that for such a driven distance, there is also 90% probability of having 15 fatal
accidents or less (either human or AV with S =1).

OPAL-RT
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STATISTICS BASED ON VMT

Drawbacks

. Bad, the better the AVs, the larger the number of test kilometers that must be driven to get reliable
statistics; If S increases, so must D as well.

J Worse, if we change the CAV to be tested, the tests must be started all over again!
O Different OEMs produce different CAVs with different architectures and performances;

O Those systems are also evolving, being updated and learning continuously.

- Currently infeasible: To guarantee a P probability per VMT, one requires at least 1/p VMT must be
driven.

J Not transparent: Unlikely that society will be satisfied with the statistical argument only.

, OPAL-RT
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PROBLEMS WITH EVOLVING AVs

CAVs on the road will evolve with time. They will require continuous monitoring of
performance. Evolution may stem from:

U Learning capacity of the vehicle. It gains experience.

U Accumulation of data on its internal state

U Accumulation of environmental data, updating maps

U Updating software systems (such as in decision-making, risk calculation,
data fusion, control, etc.).

U Updating hardware (e.g. sensors, processors)

This dynamic metamorphosis and steadily evolution of the AVs greatly complicate the
anticipation of the vehicle’s behavior and its validation.

Worse: various manufacturers will put different CAV models on the roads.
AVs won’t have a homogeneous behavior. Therefore data are NOT ergodic!

OPAL-RT
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PROBLEMS WITH EVOLVING AVs

) ) ) Decay of Influence of a change over Time l
CAVs will evolve with time

- Short-term and long-term
learning capabilities

- Software updates

- Hardware updates

Metrics of safety in an upgradable
environment should forgive but not
forget.

Influence of a new upgrade

Time (n)

A simple weighted (W) first order

AR to model a dynamic safety W B 3
metric (SM), which has a Markovian SM(n) =W - X(n)+(1=W)SM(n-1)

property, can be useful:

, OPAL-RT
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SOME PARTIAL REMEDIES

J Take a modular approach with already validated technologies and systems; l

A Exploit virtualization and computing tools to identify most risky driving scenarios,
speed-up assessment and reduce the cost of the validation process;

O Exploit virtualization and computing tools to optimize sensing suite configurations
and combinations (fusion) in order to maximize reliability, robustness and safety;

[ pin-point most risky driving scenarios, speed-up assessment and reduce the cost of
the validation process;

[ Use VeHil (Vehicle in the loop) approach to reduce modeling complexity issues.

O “Guardian angel” approach (driving automation runs in background of human
driving) to cumulate data safely over long period of time (large VMT);

[ Minimize the risk (short-term) by reducing speed, maximizing the use of a priori info
and constraints on ODD (ex. using HD maps with low speed autonomous shuttle to
solve the last km problem);

[ Use other safety metrics, tolerate and accept some unknown risks.

OPAL-RT
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CONCLUSIONS

[ Safety has a cost;

[ Safety can never reach 100%;

L AVs safety relies mainly on reliability and robustness;

[ Extremely high system complexity and unconstrained ODD are two main challenges;

[ Our ability to design complex systems currently exceeds our ability to test them;

J DMPs (decision-making processes) requires simultaneously extremely high sensitivity
and selectivity. Hard to achieve;

[ Real-time requirements, latency in DMPs and data registration are big issues;

U Dealing with extremely rare events and very high safety level requires the processing
and analysis of huge amount of data;

[ Real datais not ergodic nor stationary. Make usual statistical approaches difficult;

[ Discretization in DMPs (discrete Markov chains, Bayesian networks)is an issue for
adequate modeling.

OPAL-RT
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CONCLUSIONS

O Detailed physical modeling and microscopic simulation tools is a must for realistic
behavior predictions;

O Simulation and virtualization will be come the dominant approach for AVs validation
similar to aerospace industry;

U Fusion of FOT, tests-on-track and simulation data likely to be the way to go;

O Test track data’s role will shift from technology validation to ground truth data for
calibrating/validating the simulation models;

U FOT data yet too small for lagging safety analysis. But currently useful for technology
debugging and for knowledge building on driving scenarios and vehicular behavior
as well as extraction/screening of the most risky/relevant scenarios used in
simulation;

U Further problem: AVs are heterogeneous (different OEMs) and evolving (learning);

O Urgent need for standards, standards, standards...
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